Federated causal inference for multi-site observational health data.
- Partial identification — Manski bounds with optimal federated aggregation
- Privacy-preserving — No patient-level data sharing (HIPAA compliant)
- Multi-site — Coordinate analysis across distributed OMOP CDM databases
- Sensitivity analysis — E-values and robustness quantification
npm install
npm run buildRequires Node.js ≥18.
# Generate synthetic OMOP data
node packages/cli/dist/index.js causal generate-omop-data --scenario diabetes --output ./data -n 1000
# Run causal analysis
node packages/cli/dist/index.js causal analyze --data ./data --scenario diabetes --output results.jsonProgrammatic:
import { computeATEBounds } from './packages/core/src';
const bounds = computeATEBounds(data, { assumption: 'mtr' });packages/
core/ # Causal inference algorithms
cli/ # Command interface
npm test # Run tests
npm run lint # Lint code
npm run validate # Full checkApache 2.0