Skip to content

Phased array antenna system design, optimization, and performance visualization for wireless communication and radar applications.

License

Notifications You must be signed in to change notification settings

jman4162/phased-array-systems

Repository files navigation

phased-array-systems

CI PyPI version Python 3.10+ License: MIT

Phased array antenna system design, optimization, and performance visualization for wireless communications and radar applications.

Features

  • Requirements as first-class objects: Every run produces pass/fail + margins with traceability
  • Trade-space exploration: DOE + Pareto optimization over single-point designs
  • Flat metrics dictionary: All models return consistent dict[str, float] for interchange
  • Config-driven reproducibility: Stable case IDs, seed control, version stamping

Installation

pip install phased-array-systems

# Development dependencies
pip install phased-array-systems[dev]

# Visualization extras
pip install phased-array-systems[plotting]

Quick Start

Single Case Evaluation

from phased_array_systems.architecture import Architecture, ArrayConfig, RFChainConfig
from phased_array_systems.scenarios import CommsLinkScenario
from phased_array_systems.evaluate import evaluate_case

# Define architecture
arch = Architecture(
    array=ArrayConfig(nx=8, ny=8, dx_lambda=0.5, dy_lambda=0.5),
    rf=RFChainConfig(tx_power_w_per_elem=1.0, pa_efficiency=0.3),
)

# Define scenario
scenario = CommsLinkScenario(
    freq_hz=10e9,
    bandwidth_hz=10e6,
    range_m=100e3,
    required_snr_db=10.0,
)

# Evaluate
metrics = evaluate_case(arch, scenario)
print(f"EIRP: {metrics['eirp_dbw']:.1f} dBW")
print(f"Link Margin: {metrics['link_margin_db']:.1f} dB")

DOE Trade Study

from phased_array_systems.trades import DesignSpace, generate_doe, BatchRunner, extract_pareto

# Define design space
space = (
    DesignSpace()
    .add_variable("array.nx", "int", low=4, high=16)
    .add_variable("array.ny", "int", low=4, high=16)
    .add_variable("rf.tx_power_w_per_elem", "float", low=0.5, high=3.0)
)

# Generate DOE
doe = generate_doe(space, method="lhs", n_samples=100, seed=42)

# Run batch evaluation
runner = BatchRunner(scenario)
results = runner.run(doe)

# Extract Pareto frontier
pareto = extract_pareto(results, [
    ("cost_usd", "minimize"),
    ("eirp_dbw", "maximize"),
])

Examples

See the examples/ directory:

  • 01_comms_single_case.py - Single case evaluation
  • 02_comms_doe_trade.py - Full DOE trade study workflow

Tutorial Notebook

Open In Colab

Try the interactive tutorial in Google Colab!

Package Structure

phased_array_systems/
├── architecture/     # Array, RF chain, cost configurations
├── scenarios/        # CommsLinkScenario, RadarDetectionScenario
├── requirements/     # Requirement definitions and verification
├── models/
│   ├── antenna/      # Phased array adapter and metrics
│   ├── comms/        # Link budget, propagation models
│   └── swapc/        # Power and cost models
├── trades/           # DOE, batch runner, Pareto analysis
├── viz/              # Plotting utilities
└── io/               # Config loading, results export

Development

# Clone the repository
git clone https://github.com/jman4162/phased-array-systems.git
cd phased-array-systems

# Install in development mode
pip install -e ".[dev]"

# Run tests
pytest tests/ -v

# Run linting
ruff check .

License

MIT License - see LICENSE for details.

About

Phased array antenna system design, optimization, and performance visualization for wireless communication and radar applications.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •