A comprehensive, judge-ready analytics solution for the UIDAI Data Hackathon 2026. This project transforms raw Aadhaar enrolment data into actionable policy insights through interactive visualizations and a professional PDF report.
| Metric | Value |
|---|---|
| π Records Analyzed | 93,184 |
| π Monthly Data Points | 101 |
| ποΈ Districts Covered | 53 |
| π Pincodes Mapped | 1,585 |
- Dark mode UI β Professional, easy on the eyes
- 7 interactive Plotly charts β Zoom, pan, export to PNG
- Real-time insights β Auto-generated from live data
- Policy recommendations β Data-driven, actionable
| Chart | Purpose |
|---|---|
| State Monthly Trend | Track enrolment momentum over time |
| Age Group Dynamics | Understand demographic composition |
| District Disparities | Identify top/bottom performers |
| Pincode Distribution | Assess local-level variability |
| Seasonality Index | Plan campaigns by peak months |
| Risk Flag Summary | Flag saturation, volatility, momentum |
| Child Momentum | Monitor child enrolment share |
- 8-section professional document
- Government-grade formatting
- Executive summary + findings + recommendations
- Auto-generated from analysis pipeline
- Dataset (CSV) and Report (PDF) available directly from dashboard
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β π Overall Growth: +635.0% β
β π Recent MoM Trend: β11.1% β
β πΆ Child Share (0-17): 97.8% β
β β οΈ Saturation Risk: 49 districts β
β π Volatile Districts: 22 β
β π
Peak Months: July & April β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
UIDAI Data Hackathon/
βββ π app.py # Flask application entry
βββ π data_pipeline.py # Data processing & visualizations
βββ π generate_report.py # Technical PDF report generator
βββ π generate_student_report.py # Student project report generator
βββ π run_data_check.py # Quick validation script
βββ π wsgi.py # Azure App Service entrypoint
βββ π requirements.txt # Python dependencies
βββ π LICENSE # MIT License
βββ π Dataset/
β βββ Aadhar Enrolment Dataset.csv
βββ π templates/
β βββ index.html # Dashboard UI
βββ π static/
β βββ styles.css # Dark theme styles
βββ π UIDAI_Aadhaar_Analytics_Report.pdf
βββ π UIDAI_Report.pdf # Student project report
- Python 3.10+
- pip
# Clone or navigate to project
cd "UIDAI Data Hackathon"
# Create virtual environment
python -m venv .venv
# Activate (Windows)
.\.venv\Scripts\activate
# Activate (Linux/Mac)
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txtpython app.pyπ Open http://localhost:5000
python generate_report.pyπ Output: UIDAI_Aadhaar_Analytics_Report.pdf
python generate_student_report.pyπ Output: UIDAI_Report.pdf β Simple student project report in plain academic English
python run_data_check.py| Setting | Value |
|---|---|
| Runtime | Python 3.10+ |
| Startup Command | gunicorn --bind=0.0.0.0:$PORT wsgi:app |
| SKU | B1 or higher recommended |
- Create Azure App Service (Linux, Python)
- Configure startup command
- Deploy via Git, ZIP, or Azure CLI
- Ensure
Dataset/folder is included
| Metric | Definition |
|---|---|
| Saturation Index | Last 3-month avg Γ· Rolling 12-month max |
| Volatility Flag | 12-month std dev > 1.5Γ state median |
| Low Momentum | Last 3-month avg < 50% of 12-month avg |
| Child Momentum | Share of 0β17 age enrolments over time |
Based on data-driven analysis:
- πΆ Child Infrastructure β Prioritize biometric updates for children (93.9% share)
- π Mobile Units β Deploy to Gondia, Ahilyanagar, Hingoli
- π Campaign Timing β Align with July & April peaks
β οΈ Monitor Volatility β Focus on Jalgaon, Jalna, Ahmadnagar- π― Service Quality β Shift focus in 49 saturated districts
| Layer | Technology |
|---|---|
| Backend | Flask 3.1, Gunicorn |
| Data | Pandas 2.3, NumPy |
| Visualization | Plotly 6.5 |
| PDF Generation | ReportLab 4.4 |
| Hosting | Azure App Service |
| Theme | Custom Dark Mode |
This project is licensed under the MIT License.
MIT License Β© 2026 Mandar Kajbaje
See LICENSE for full details.
Mandar Kajbaje
UIDAI Data Hackathon 2026