Skip to content

Insight-driven Aadhaar enrolment analytics for Maharashtra with a Flask dashboard, Plotly visuals, and a judge-ready PDF report.

License

Notifications You must be signed in to change notification settings

Mandar123454/UIDAI-Data-Hackathon

Repository files navigation

UIDAI Hackathon

πŸ›οΈ UIDAI Aadhaar Enrolment Analytics Dashboard

Maharashtra State Analysis β€” Government-Grade Insights

Python Flask Pandas Plotly Azure

License Status Dark Mode

πŸ”— Live Dashboard


πŸ“‹ Overview

A comprehensive, judge-ready analytics solution for the UIDAI Data Hackathon 2026. This project transforms raw Aadhaar enrolment data into actionable policy insights through interactive visualizations and a professional PDF report.

Metric Value
πŸ“Š Records Analyzed 93,184
πŸ“… Monthly Data Points 101
🏘️ Districts Covered 53
πŸ“ Pincodes Mapped 1,585

✨ Features

🎯 Analytics Dashboard

  • Dark mode UI β€” Professional, easy on the eyes
  • 7 interactive Plotly charts β€” Zoom, pan, export to PNG
  • Real-time insights β€” Auto-generated from live data
  • Policy recommendations β€” Data-driven, actionable

πŸ“ˆ Visualizations

Chart Purpose
State Monthly Trend Track enrolment momentum over time
Age Group Dynamics Understand demographic composition
District Disparities Identify top/bottom performers
Pincode Distribution Assess local-level variability
Seasonality Index Plan campaigns by peak months
Risk Flag Summary Flag saturation, volatility, momentum
Child Momentum Monitor child enrolment share

πŸ“‘ PDF Report Generator

  • 8-section professional document
  • Government-grade formatting
  • Executive summary + findings + recommendations
  • Auto-generated from analysis pipeline

πŸ“₯ Downloads

  • Dataset (CSV) and Report (PDF) available directly from dashboard

πŸ” Key Findings

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  πŸ“ˆ Overall Growth:        +635.0%                          β”‚
β”‚  πŸ“‰ Recent MoM Trend:      βˆ’11.1%                           β”‚
β”‚  πŸ‘Ά Child Share (0-17):    97.8%                            β”‚
β”‚  ⚠️  Saturation Risk:       49 districts                    β”‚
β”‚  πŸ“Š Volatile Districts:    22                               β”‚
β”‚  πŸ“… Peak Months:           July & April                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ—οΈ Project Structure

UIDAI Data Hackathon/
β”œβ”€β”€ πŸ“„ app.py                    # Flask application entry
β”œβ”€β”€ πŸ“„ data_pipeline.py          # Data processing & visualizations
β”œβ”€β”€ πŸ“„ generate_report.py        # Technical PDF report generator
β”œβ”€β”€ πŸ“„ generate_student_report.py # Student project report generator
β”œβ”€β”€ πŸ“„ run_data_check.py         # Quick validation script
β”œβ”€β”€ πŸ“„ wsgi.py                   # Azure App Service entrypoint
β”œβ”€β”€ πŸ“„ requirements.txt          # Python dependencies
β”œβ”€β”€ πŸ“„ LICENSE                   # MIT License
β”œβ”€β”€ πŸ“‚ Dataset/
β”‚   └── Aadhar Enrolment Dataset.csv
β”œβ”€β”€ πŸ“‚ templates/
β”‚   └── index.html               # Dashboard UI
β”œβ”€β”€ πŸ“‚ static/
β”‚   └── styles.css               # Dark theme styles
β”œβ”€β”€ πŸ“„ UIDAI_Aadhaar_Analytics_Report.pdf
└── πŸ“„ UIDAI_Report.pdf           # Student project report

πŸš€ Quick Start

Prerequisites

  • Python 3.10+
  • pip

Installation

# Clone or navigate to project
cd "UIDAI Data Hackathon"

# Create virtual environment
python -m venv .venv

# Activate (Windows)
.\.venv\Scripts\activate

# Activate (Linux/Mac)
source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt

Run Dashboard

python app.py

🌐 Open http://localhost:5000

Generate PDF Report

python generate_report.py

πŸ“„ Output: UIDAI_Aadhaar_Analytics_Report.pdf

Generate Student Report

python generate_student_report.py

πŸ“„ Output: UIDAI_Report.pdf β€” Simple student project report in plain academic English

Validate Data Pipeline

python run_data_check.py

☁️ Azure Deployment

App Service Configuration

Setting Value
Runtime Python 3.10+
Startup Command gunicorn --bind=0.0.0.0:$PORT wsgi:app
SKU B1 or higher recommended

Deploy

  1. Create Azure App Service (Linux, Python)
  2. Configure startup command
  3. Deploy via Git, ZIP, or Azure CLI
  4. Ensure Dataset/ folder is included

πŸ“Š Advanced Metrics

Metric Definition
Saturation Index Last 3-month avg Γ· Rolling 12-month max
Volatility Flag 12-month std dev > 1.5Γ— state median
Low Momentum Last 3-month avg < 50% of 12-month avg
Child Momentum Share of 0–17 age enrolments over time

🎯 Policy Recommendations

Based on data-driven analysis:

  1. πŸ‘Ά Child Infrastructure β€” Prioritize biometric updates for children (93.9% share)
  2. 🚐 Mobile Units β€” Deploy to Gondia, Ahilyanagar, Hingoli
  3. πŸ“… Campaign Timing β€” Align with July & April peaks
  4. ⚠️ Monitor Volatility β€” Focus on Jalgaon, Jalna, Ahmadnagar
  5. 🎯 Service Quality β€” Shift focus in 49 saturated districts

πŸ› οΈ Tech Stack

Tech Stack

Layer Technology
Backend Flask 3.1, Gunicorn
Data Pandas 2.3, NumPy
Visualization Plotly 6.5
PDF Generation ReportLab 4.4
Hosting Azure App Service
Theme Custom Dark Mode

πŸ“œ License

This project is licensed under the MIT License.

MIT License Β© 2026 Mandar Kajbaje

See LICENSE for full details.


πŸ‘€ Author

Mandar Kajbaje
UIDAI Data Hackathon 2026


Made with love For UIDAI