Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 114 additions & 5 deletions ff.go
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ package main

import (
"fmt"
"math"
"math/rand"
"runtime"
"sort"
Expand All @@ -17,16 +18,22 @@ func FF() {
_ = iris
rng := rand.New(rand.NewSource(1))
fitness := func(g []float32) float64 {
fitness := 150.0
fitness := 0.0 //150.0
l1 := NewMatrix[float32](4, 4, g[:16]...)
b1 := NewMatrix[float32](4, 1, g[16:20]...)
l2 := NewMatrix[float32](4, 3, g[20:32]...)
b2 := NewMatrix[float32](3, 1, g[32:35]...)
l3 := NewMatrix[float32](3, 4, g[35:47]...)
b3 := NewMatrix[float32](4, 1, g[47:51]...)
l4 := NewMatrix[float32](4, 4, g[47:63]...)
b4 := NewMatrix[float32](4, 1, g[63:67]...)
rows := make([][]float32, 0, 8)
for _, flower := range iris {
input := NewMatrix[float32](4, 1)
for _, measure := range flower.Measures {
input.Data = append(input.Data, float32(measure))
}
entropy := 0.0
output := l1.MulT(input).Add(b1).Sigmoid()
output = l2.MulT(output).Add(b2).Sigmoid()
max, index := float32(0.0), 0
Expand All @@ -36,9 +43,41 @@ func FF() {
}
}
if Labels[flower.Label] == index {
fitness--
//fitness--
}
sum := float32(0.0)
for _, value := range output.Data {
sum += value
}
for _, value := range output.Data {
if value == 0 || sum == 0 {
continue
}
entropy += float64(value/sum) * math.Log2(float64(value/sum))
}
fitness -= entropy
rows = append(rows, output.Data)
output = l3.MulT(output).Add(b3).Sigmoid()
output = l4.MulT(output).Add(b4)
for i, value := range output.Data {
diff := value - float32(flower.Measures[i])
fitness += float64(diff * diff)
}
}
entropy := 0.0
for i := range 3 {
sum := float32(0.0)
for _, row := range rows {
sum += row[i]
}
for _, row := range rows {
if row[i] == 0 || sum == 0 {
continue
}
entropy += float64(row[i]/sum) * math.Log2(float64(row[i]/sum))
}
}
fitness -= entropy
return fitness
}

Expand All @@ -48,7 +87,7 @@ func FF() {
}

const (
width = 4*4 + 4 + 4*3 + 3
width = 4*4 + 4 + 4*3 + 3 + 3*4 + 4 + 4*4 + 4
models = width / width
iterations = 1024
population = 8 * 1024
Expand Down Expand Up @@ -155,9 +194,79 @@ func FF() {
copy(state[ii], pop[ii].Number.Data)
}
fmt.Println(pop[0].Fitness)
if pop[0].Fitness == 0 {
for _, flower := range iris {
mean := make([]float32, 3)
for i := range pop {
g := pop[i].Number.Data
l1 := NewMatrix[float32](4, 4, g[:16]...)
b1 := NewMatrix[float32](4, 1, g[16:20]...)
l2 := NewMatrix[float32](4, 3, g[20:32]...)
b2 := NewMatrix[float32](3, 1, g[32:35]...)
input := NewMatrix[float32](4, 1)
for _, measure := range flower.Measures {
input.Data = append(input.Data, float32(measure))
}
output := l1.MulT(input).Add(b1).Sigmoid()
output = l2.MulT(output).Add(b2).Sigmoid()
for ii := range output.Data {
mean[ii] += output.Data[ii]
}
}
for i := range mean {
mean[i] /= float32(len(pop))
}
stddev := make([]float32, 3)
for i := range pop {
g := pop[i].Number.Data
l1 := NewMatrix[float32](4, 4, g[:16]...)
b1 := NewMatrix[float32](4, 1, g[16:20]...)
l2 := NewMatrix[float32](4, 3, g[20:32]...)
b2 := NewMatrix[float32](3, 1, g[32:35]...)
input := NewMatrix[float32](4, 1)
for _, measure := range flower.Measures {
input.Data = append(input.Data, float32(measure))
}
output := l1.MulT(input).Add(b1).Sigmoid()
output = l2.MulT(output).Add(b2).Sigmoid()
for ii := range output.Data {
diff := mean[ii] - output.Data[ii]
stddev[ii] += diff * diff
}
}
for i := range stddev {
stddev[i] /= float32(len(pop))
}
index, min := 0, float32(math.MaxFloat32)
for i, value := range stddev {
if value < min {
min, index = value, i
}
}
fmt.Println(index, flower.Label)
}

if pop[0].Fitness < 100 {
g := pop[0].Number.Data
l1 := NewMatrix[float32](4, 4, g[:16]...)
b1 := NewMatrix[float32](4, 1, g[16:20]...)
l2 := NewMatrix[float32](4, 3, g[20:32]...)
b2 := NewMatrix[float32](3, 1, g[32:35]...)
for _, flower := range iris {
input := NewMatrix[float32](4, 1)
for _, measure := range flower.Measures {
input.Data = append(input.Data, float32(measure))
}
output := l1.MulT(input).Add(b1).Sigmoid()
output = l2.MulT(output).Add(b2).Sigmoid()
max, index := float32(0.0), 0
for i, value := range output.Data {
if value > max {
max, index = value, i
}
}
fmt.Println(index, flower.Label)
}
break
}
}

}