Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 19 additions & 10 deletions torchTextClassifiers/model/components/text_embedder.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import math
from dataclasses import dataclass
from typing import Optional
from typing import Dict, Optional

import torch
import torch.nn as nn
Expand Down Expand Up @@ -129,7 +129,7 @@ def forward(
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
return_label_attention_matrix: bool = False,
) -> dict[str, Optional[torch.Tensor]]:
) -> Dict[str, Optional[torch.Tensor]]:
"""Converts input token IDs to their corresponding embeddings.

Args:
Expand Down Expand Up @@ -200,15 +200,18 @@ def _get_sentence_embedding(
token_embeddings: torch.Tensor,
attention_mask: torch.Tensor,
return_label_attention_matrix: bool = False,
) -> torch.Tensor:
) -> Dict[str, Optional[torch.Tensor]]:
"""
Compute sentence embedding from embedded tokens - "remove" second dimension.

Args (output from dataset collate_fn):
token_embeddings (torch.Tensor[Long]), shape (batch_size, seq_len, embedding_dim): Tokenized + padded text
attention_mask (torch.Tensor[Long]), shape (batch_size, seq_len): Attention mask indicating non-pad tokens
return_label_attention_matrix (bool): Whether to compute and return the label attention matrix
Returns:
torch.Tensor: Sentence embeddings, shape (batch_size, embedding_dim)
Dict[str, Optional[torch.Tensor]]: A dictionary containing:
- 'sentence_embedding': Sentence embeddings, shape (batch_size, embedding_dim) or (batch_size, n_labels, embedding_dim) if label attention is enabled
- 'label_attention_matrix': Attention matrix if label attention is enabled and return_label_attention_matrix is True, otherwise None
"""

# average over non-pad token embeddings
Expand All @@ -219,14 +222,20 @@ def _get_sentence_embedding(
if self.attention_config is not None:
if self.attention_config.aggregation_method is not None: # default is "mean"
if self.attention_config.aggregation_method == "first":
return token_embeddings[:, 0, :]
return {
"sentence_embedding": token_embeddings[:, 0, :],
"label_attention_matrix": None,
}
elif self.attention_config.aggregation_method == "last":
lengths = attention_mask.sum(dim=1).clamp(min=1) # last non-pad token index + 1
return token_embeddings[
torch.arange(token_embeddings.size(0)),
lengths - 1,
:,
]
return {
"sentence_embedding": token_embeddings[
torch.arange(token_embeddings.size(0)),
lengths - 1,
:,
],
"label_attention_matrix": None,
}
else:
if self.attention_config.aggregation_method != "mean":
raise ValueError(
Expand Down